الثانية علوم فيزيائية

مدة الانجاز:

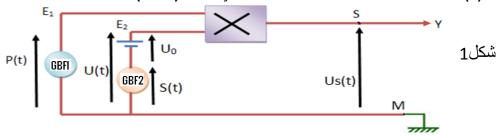
فرض محروس رقم 1 الدورة 2

ذ.عبد العالى ايت الحسن ***20-2014

الثانوية التأهيلية ابن ماجة _ تالوين السنة الدراسية: 2013- 2014

صفحة 1/3

2h


(6نقط)

موضوع الفيزياء 1:

أمن اجل نقل المعلومة الصوتية ذات تردد منخفض, نقوم بتحويلها الى اشارة كهربائية بواسطة ميكروفون ثم نقوم بتضمين وسع يُّتوتر الموجة الحاملة لهذه الإشارة كما يوضح الشكل اسفله:

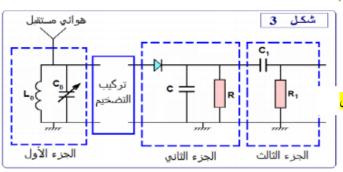
الهدف من هذا التمرين تحقيق تضمين وسع التوتر الحامل لمعلومة صوتية التي ننمذجها بموجة جيبية تكتب على شكل: ر S(t)=S_mcos(2πf_st). ولارسال الاشارة ننجز التركيب التجريبي اسفله (شكل1).

يُعطبق مولد الترددات المنخفضة GBF1 في المدخل E1 توتر اجببيا $P(t)=P_{m}cos(2\pi f_{p}t)$ (توتر حامل)

 $m U_0=2.3V$ بالإضافة الى التوتر المستمر $m U_0$ المضبوط على القيمة m S(t) بالإضافة الى التوتر المستمر m GBF2 في المدخل m E2 توترا جيبيا يُّولمعاينة توتر الخروج (Us(t على شاشة راسم التذبذب نربط المخرج S بالمدخل Y والنقطة M بالهيكل فنحصل على الرسم يُّالممثل اسفله (شكل2).

> يُنضبط الحساسية الرأسية على: 2V/div ونضبط الكسح على: 25ms/div 1div=1cm ≥

- 1 ن
 - ما إسم الجهاز المستعمل ؟ وما الهدف من إستعماله؟
 - التوتر المعاين على شاشة راسم التذبذب يتناسب مع \mathbf{E}_1 المطبقين عند مدخليهما $\mathbf{P}(t)$ المطبقين عند مدخليهما \mathbf{E}_1 $U_s(t) = K \times U(t) \times P(t)$, E_2
 - أ. ما مدلول الثابتة K وما وحدتها في النظام العلمي للوحدات ب. بين أن تعبير وسع التوتر المضمن (Um(t على الشكل $U_m(t) = A[m\cos(2\pi f_s t) + 1]$ النَّالي: محددا تعبير كل من A و m
 - ج. يتغير الوسع المضمن (Um(t بين قيمتين حديتين Um, min و Um, min ، حدد هاتين القيمتين
 - أوجد قيمة كل من تردد التوتر المضمن f_s (الإشارة المراد إرسالها) وتردد التوتر المضمن F_P (التوتر الحامل) أوجد تعبير m نسبة التضمين بدلالة كل من $U_{m, min}$ و $U_{m, min}$ ، أحسب قيمة نسبة التضمين m ن0.5
 - أذكر شروط الحصول على تضمين جيد (شرطين) ، هل هذا التضمين جيد أم ردىء أوجد التعبير العددي للإشارة المراد إرسالها (S(t


❖ عملين الوسع:

لإستقبال الإشارة المضمنة وإزالة التضمين نستعمل التركيب الممثل في الشكل 3:

- ما هو دور الجزء الأول من التركيب ؟ علل جوابك
- ما هي القيمة التي يجب أن تأخدها C_0 لكى يتحقق هذا الجزء $\pi^2 = 10$ من الدارة الهدف المتوخى منه ؟ نأخد
 - ما هو دور الجزء الثاني ؟ ما هو الشرط اللازم للحصول على
- علما أن m C=0,1~uF ، حدد m R القيمة المناسبة لمقاومة $m ^{0.5}$ الدارة بين القيم التالية : 200 K ، 2 K ، 2 C ، 20 K ، 20 K ، 20 K الدارة بين القيم التالية : رِّ10. ما هو دور الجزء الثالث ؟ 0.25

 $F_{\rm p}=20~{
m KHz}$, $f_{\rm c}=1000~{
m Hz}$, $L_{\rm h}=10~{
m mH}$

0.5ن

موضوع الفيزياء 2: (7.75نقط)

يهدف هذا التمرين الى دراسة سقوط حر وسقوط في مائع لكرية في مجال الثقالة... الجزآن غير مستقلين المعطيات :

 $r = 6,00.10^{-3} m$ ؛ $r = 6,00.10^{-3}$

 $g=10\text{m/s}^2$. $m=4,10.10^{-3}~kg$: كتلة الكرية .

نذكر أن شدة دافعة أرخميدس تساوي شدة وزن الحجم المزاح للسائل.

الجزء الأول:

السقوط الرأسى الحر لكرية حديدية

عند اللحظة (t=0) ، نحرر بدون سرعة بدئية من موضع O يوجد على ارتفاع من سطح الأرض، كرية حديدية متجانسة كتلتها m. ندرس حركة الكرية في معلم (\vec{k},\vec{k}) مرتبط بالأرض (الشكل 1).

1.1. بتطبيق القانون الثاني لنيوتن، أثبت المعادلة التفاضلية التي يحققها ZG أنسوب

مركز قصور الكرية في المعلم (O, \vec{k}) .

2.1. استنتج طبيعة حرّكة G.

ا 3.1. اكتب المعادلة الزمنية $z_{G}(t)$ لحركة $z_{G}(t)$ المعادلة الزمنية $z_{G}(t)$

رون $v_{\rm G}$ مرعة $v_{\rm G}$ عند اللحظة $v_{\rm G}$ عند $v_{\rm G}$

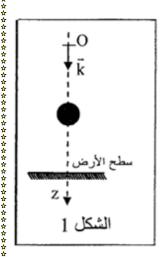
الجزء الثاني: دراسة سقوط جسم صلب متجانس في مائع.

تُمكن دراسة سقوط جسم صلب متجانس في سائل لزج من تحديد بعض المقادير الحركية ولزوجة السائل المستعمل.

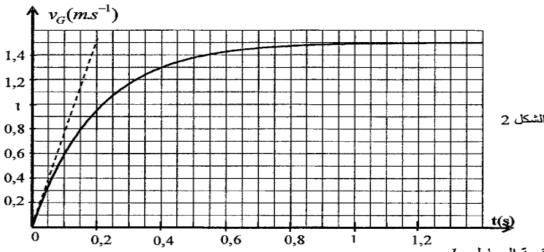
نملأ أنبوبا مدرجا بسائل لزج وشفاف كتلته الحجمية ρ ثم نُسقط فيه كرية متجانسة كتلتها m ومركز قصورها G بدون سرعة بدنية عند اللحظة m ندرس حركة G بالنسبة لمعلم أرضي نعتبره غاليليا .

نمعلم موضع G عند لحظة f بالأنسوب Z على محور OZ رأسي موجّه نحو الأسفل (الشكل1).

نعتبر أن موضع G منطبق مع أصل المحور \overrightarrow{OZ} عند أصل التواريخ وأن دافعة أرخميدس \overrightarrow{F} غير مهملة بالنسبة لباقي القوى المطبقة على الكرية.


ندمذج تأثیر السائل علی الکریة أثناء الحرکة بقوة احتکاك $f=-kv_G$ ، حیث v_G متجهة سرعة g عند لحظة و v_G معامل ثابت موجب .

 $\frac{dv_G}{dt} + A.v_G = B$ الشكل و تكتب على الشكل $A.v_G = B$ الشكل و $A.v_G = B$ الشكل القانون الثاني لنيوتن، بيّن أن المعادلة التفاضلية لحركة و $A.v_G = B$ الشكل و $A.v_G = B.v_G = B$


ي حل المعادلة التفاضلية ، حيث $au=rac{1}{4}$ الزمن المميز الحركة $v_G(t)=rac{B}{4}(1-e^{-rac{t}{\tau}})$ الزمن المميز الحركة au

 V_{lim} 1. B و B المركز قصور الكرية بدلالة A و B و B 1. V_{lim}

4- نحصل بو اسطة عدة معلوماتية ملائمة على منحنى الشكل 2 ، الذي يمثل تغير السرعة v_{c} بدلالة الزمن ؛ حدد مبياتيا قيمتي V_{c} و τ . τ

0.5ن

 $k = 6\pi n$. $k = 6\pi n$. k

حدد قيمة η للسائل المستعمل في هذه التجربة . 0.5

7- تكتب المعادلة التفاضلية لحركة $\frac{dv_G}{dt} = 7,57 - 5$ v_G : كالتالي v_G كالتالي ومعطيات الجدول

1ن

أوجد قيمتي a_1 و v_2 . 1ن

t (s)	v (m.s ⁻¹)	a (m.s ⁻²)
0	0	7,57
0,033	0,25	a_1
0,066	V ₂	5,27

مُوضوع الكيمياء: (6.25 نقط)

عمود نحاس ـ فضة

 $I = -20 \, \text{ mA}$ ننجز التركيب التجريبي التالي ، فيشير الأمبيرمتر إلى قيمة سالبة $1F = 9,\,65 \cdot 10^4 \, \text{C. mo}$ نعطى : $1F = 9,\,65 \cdot 10^4 \, \text{C. mo}$

- أسئلة:
- أنقل التركيب التجريبي إلى ورقتك وبين عليه قطبية العمود ، محددا منحى التيار الكهربائي معللا جوابك ، ثم استنتج منحى مختلف حملات الشحنات
 - (الالكترونات والإيونات)
 - 2. ما دور القنطرة الأيونية؟ 5,0ن
- اعط نصفي معادلتي التفاعل عند كل الكترود
 (عند الكترود النحاس و عند الكترود الفضة) ، ثم استنتج الانود والكاتود معللا جوابك؟
- استنتج المعادلة الحصيلة للتفاعل ، ثم اعط الجدول الوصفي لهذا التفاعل 0.75
- 5. علما أن للمحلولين نفس التركيز C ، عبر عن خارج التفاعل البدئي Qr,i للمعادلة بدلالة C 5.00
- 6. علما أن هذا العمود يشتغل لمدة min 30 min. أحسب كمبة الكهرباء الممنوحة خلال مدة الاشتغال 5,0ن
 - 7. أحسب قيمة تقدم التفاعل x بعد تمام مدة الاشتغال 6,5ن
 - Δ n (Cu^{2+}) و Δ n (Δ n (Δ g) و Δ n (Δ g) و Δ n (Δ g).
- $V = 200 \, \mathrm{mL}$ علما أن للمحلولين نفس الحجم $\Delta \, [\mathrm{Ag^+}]$ و $\Delta \, [\mathrm{Cu}^{2+}]$ علما أن للمحلولين نفس الحجم $\Delta \, [\mathrm{Cu}^{2+}]$

المرجو اعطاء التعابير الرياضية قبل التطبيق العددي وفقك الله وزادك في العلم بسطة

 $(Ag^{+} + NO_{3}^{-})$