
السنة الدراسية : 2016-2015	فرض محروس رقم 2 الدورة الأولى	ثانوية وادي الذهب أصيلة
المستوى: الثانية باك ع ف 3	مدة الإنجاز : ساعتان	مادة : الفيزياء و الكيمياء

فيزياء 1 (7نقط) :

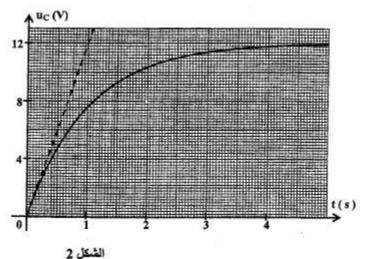
ا-الجزء الأول : شحن مكثف

ننجز التركيب التجريبي الممثل في الشكل (1) والمكون من . غير مشحون بدئيا ، مركب على التوالى مع \mathcal{C} R موصل أومى مقاومته

E = 12 V مولد قوته الكهرمحركة Kو قاطع التيار

نغلق الدارة عند اللحظة t=0 ونعاين ، باستعمال راسم تذبذب ذاكراتي تغيرات التوتر $u_{c}(t)$ بين مربطي المكثف بدلالة الزمن ، فنحصل على المنحنى الممثل في الشكل (2) .

(ن). $u_c(t)$ المعادلة التفاضلية التي يحققها التوتر $u_c(t)$

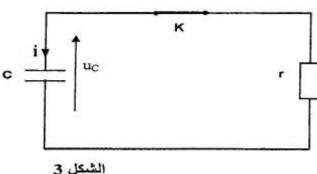

حل $u_C(t)=E(1-e^{-rac{t}{ au}})$ حل حل -2 (ان). المعادلة التفاضلية حيث au ثابتة الزمن

au حدد تعبير au و بين ، باعتماد معادلة الأبعاد ، أن لauبعدا زمنیا .(1ن)

 $C=100~\mu F$ عين مبيانيا au واستنتج أن قيمة $C=100~\mu$ (ان) . $R=10~k\Omega$

5-أحسب الطاقة المخزونة في المكثف في النظام

الدائم .(1ن)



١١-الجزء الثاني : تفريغ المكثف

انفرغ المكثف عند اللحظة t=0 في موصل أومي مقاومة r أنظر الشكل (3) ، فيتغير التوتر بين مربطي الموصل -1 الأومى وفق المعادلة :

$$u_C = 360. e^{-\frac{t}{\tau'}}$$

. (V) الفولط عنها بالفولط $u_{\mathcal{C}}$ معبر عنها بالفولط au'أوجد قيمة $\, r \,$ علما أن التوتر بين مربطى المكثف يأخذ القيمة (ن) . t = 2 ms عند اللحظة $u_c(t) = 132,45 V$ 2-اشرح كيف يجب اختيار مقاومة الموصل الأومي لضمان تفريغ أسرع للمكثف . (1ن)

فيزياء 2 (6نقط) :

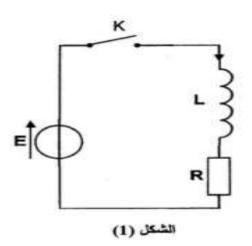
لتحديد قيمة L معامل التحريض لوشيعة ننجز الدارة الممثلة في الشكل (1) والمكونة من مولد مؤمثل للتوتر قوته الكهرمحركة $E=5\,V$ ، وموصل أومي مقاومته R ، ووشيعة معامل تحريضها L ومقاومتها مهملة ، وقاطع التيار K .

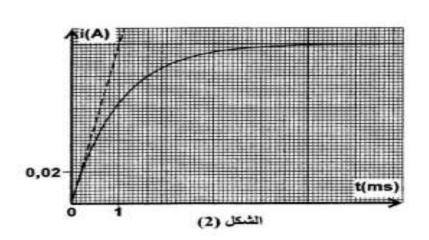
نغلق قاطع التيار K عند اللحظة $t_0=0$. يمثل منحنى الشكل (2) تغيرات شدة التيار المار في الدارة .

1-ما دور الوشيعة عند غلق قاطع التيار في هذه الدارة ؟ (1ن)i(t) المار في الدارة.

(ان) عین قیمتها τ ؟ عین قیمتها τ

4-حل المعادلة التفاضلية يكتب:


(1ن)


. I_0 من I_0 و I_0 . أعط تعبير كل من I_0 و I_0 . حدد قيمة I_0 مبيانيا. (ان)

(1ن) . $L=50\ mH$ و تحقق من أن R و تحقق من أن 16-أوجد التعبير العددي للتوتر u_L بين مربطى

الوشيعة بدلالة الزمن . مثل على الشكل (2)

(ن1) . $u_L(t)$ المنحنى الممثل لتغيرات التوتر

كيمياء (7نقط):

يهدف هذا التمرين الى دراسة حمض البوتانويك مع الماء

. A^- صيغة حمض البوتانويك هي C_3H_7COOH لتبسيط نرمز له بAH و قاعدته المرافقة ب

. V=100~m وحجمه $C=10^{-2}~mol.~L^{-1}$ نحضر محلولا مائيا (S) لحمض البوتانويك تركيزه

. pH = 3,41 فنجد pH المحلول (S) نقيس

1-أكتب معادلة التفاعل بين حمض البوتانويك AH و الماء . ثم انشئ الجدول الوصفي للتحول الكيميائي .(1ن)

(نركيز أيونات الاوكسونيوم عند التوازن).(ان) عند التوازن بدلالة V و $H_3 O^+]_{
m eq}$ (تركيز أيونات الاوكسونيوم عند التوازن).(ان)

(ن) عند التوازن بدلالة pH و p ، ثم احسب قيمتها . ماذا تستنتج (ان) عند التوازن بدلالة au

(ن1) . لهذا التحول Q_r لهذا التحول Q_r

 $Q_{r, ext{eq}}=rac{x_{max}\cdot au^2}{V.(1- au)}$: جبين أن تعبير Q_r خارج التفاعل عند التوازن يكتب على الشكل التالي Q_r

حيث x_{max} التقدم الأقصى . (1ن)

(ان) المقروس. التفاعل المدروس. (1ن) المقرونة بمعادلة التفاعل المدروس. (1

(ن) . C' أحسب $pH'=3{,}00$ و له C' و له البوتانويك تركيزه C' أحسب (S')

بالتوفيق

" ومن لم يذق مر التعلم ساعة ، تجرع ذل الجهل طول حياته "